
Towards Visualization of Feature Interactions in
Software Product Lines

Sheny Illescas
Software System Engineering

Johannes Kepler University Linz

Austria

Email: k1257276@students.jku.at

Roberto E. Lopez-Herrejon
Dept. Software Engineering and IT

École de technologie supérieure, Canada

Email: roberto.lopez@etsmtl.ca

Alexander Egyed
Software System Engineering

Johannes Kepler University Linz

Austria

Email: alexander.egyed@jku.at

Abstract—Software Product Lines (SPLs) are families of re-
lated systems whose members are distinguished by the set of
features they provide. To effectively evolve and maintain SPLs
it is vital to understand how features are implemented and how
they interact at different levels from source code to runtime.
However the large number of features and the complex nature
of interactions in typical SPLs make maintenance and evolution
tasks challenging, and demand robust tool support for the
software engineers to carry out these tasks. In this paper we
present the first results of our ongoing work to address this
need. We put forward four visualizations that focus on features
and their interactions at source code level, evaluate them with
four case studies, and sketch our future work.

I. INTRODUCTION

Software Product Lines (SPLs) are families of related sys-

tems whose members are distinguished by the set of features

they provide [3], [24], where a feature is an increment in

program functionality [3]. Variability is the capacity of soft-

ware artifacts to vary [28], and its effective management is a

requisite for successful SPL development. Some of the benefits

of applying SPLs are better customization, improved software

reuse, and faster time to market [24], [30], [12].

Typical SPLs involve a large number of features and prod-

ucts (i.e. feature combinations) and consequently pose unique

challenges to software engineers because the feature interac-

tions in those products must be properly detected, analyzed,

and managed. Broadly speaking, a feature interaction occurs

when the behaviour of one feature changes depending on the

presence or absence of another feature or set of features [14],

[1]. Feature interactions manifest in a wide range of levels; for

example, as source code artifacts, as unexpected executions,

or as changes in non-functional properties. Research in feature

interactions has a long standing history, and the interest in

the subject has been rekindled in light of recent research

developments in the context of SPLs [1].

However there is no robust support (e.g. no visualizations)

for software engineers to identify, analyze and manage feature

interactions which is indispensable for SPL performing evolu-

tion and maintenance tasks. In this paper we present the first

results of our ongoing work to address this need. We propose

four visualizations for features and feature interactions at

source code level which we applied to four SPL case studies of

different domains and sizes. We extend on our previous work

on Extraction and Composition for Clone-and-Own (ECCO)
which provides a framework for systematic support of SPL

development that extracts and represents features, feature de-

pendencies and feature interactions from legacy products [14],

[9], [10]. This paper provides the first results on the feasibility

of using visualization techniques for the ECCO framework and

uncovers limitations and open issues.

The paper is structured as follows. Section II presents the

necessary background on features, features interactions and

our ECCO approach. In addition it introduces the running

example that we use to illustrate ECCO’s concepts and our

visualizations. Section III presents and sketches the four visu-

alizations we implemented. Section IV provides an overview

of related work on SPL and visualization. Section V summa-

rizes the conclusions obtained from this work and outlines our

future work.

II. BACKGROUND

In this section we provide the basic background and termi-

nology necessary to understand our visualization proposals.

Features and Feature Interactions. In the area of SPLs

there are many different conceptions of the term feature [5].

In our current work we focus on source code artifacts and

take Zave’s definition, which regards features as increments

in program functionality [32], as our working definition. Sim-

ilarly, there are also multiple conceptions and interpretations

of the concept of feature interactions. Our focus is on those

that happen at the source code level, referred to as structural
interactions [1].

Running Example. We use as a running example an

academic product line called Drawing Product Line (DPL) [9].

Each variant contains a combination of the following features:

the ability to handle a drawing area (DPL), draw lines (line),

draw rectangles (rect), select a color to draw with (color),

fill the shapes drawn (fill) and clean the drawing area

(wipe). Table I lists 16 variants of DPL. The selected features

are denoted with �and the unselected features are left empty.

Figure 1 shows a code snippet that illustrates how DPL is

implemented using preprocessor annotations, one of the most

common techniques to realize SPLs [24]. The preprocessor

annotations are highlighted in blue and mark which code parts

are responsible for implementing which features. For example,

2016 IEEE Working Conference on Software Visualization

978-1-5090-3850-3/16 $31.00 © 2016 IEEE

DOI 10.1109/VISSOFT.2016.16

46

TABLE I: Products for DPL

Products DPL line rect wipe color fill

p1 � �
p2 � � �
p3 � �
p4 � � � �
p5 � � �
p6 � � �
p7 � � �
p8 � � � �
p9 � � �

p10 � � � � �
p11 � � � �
p12 � � � �
p13 � � � � �
p14 � � � �
p15 � � � � � �
p16 � � � � �

the field definition List<Line> lines shown in Line 3

will be included in class Canvas whenever the feature LINE

is selected in a product, for example in product p1, p2, or p4.

As another example consider now the code in Lines 26 and

27. For this piece of code to be included in class Line of a

product, the conditions in Line 23 and Line 25 must hold. This

means that both features LINE and COLOR must be selected in

such product. This is an example of a structural interaction,

because this piece of code will be present in a product only

when both features are selected and hence interact.

Another form of structural interaction is whenever the

absence of a feature causes source code to be present, a

phenomenon we refer to as negative features as we will shortly

explain [14], [9]. As an example consider the code of Line 29

and Line 30, which shows the constructor of the class Line
but this time with only one parameter. This piece of code

is present in a product whenever feature LINE is selected

but feature COLOR is not selected. Next we describe how our

previous work provides a more formal footing to these ideas.

ECCO Approach. It is a common industry practice to de-

velop new products by reusing artifacts from existing products

in an ad hoc manner. This practice is referred to as clone-and-
own and has documented maintenance and evolution prob-

lems [9]. In our previous work, we have proposed Extraction
and Composition for Clone-and-Own (ECCO) to address the

limitations of this practice by providing partially automated

support for it [9], [10]. In this section we present how ECCO

describes features and their interactions. For further details on

ECCO’s architecture, work flows, capabilities, and tool support

please refer to [9], [10], [15].

ECCO describes structural features and their interactions by

means of modules defined as follows [14], [9], [15].

Definition 1: A module is a set of signed features which are

either positive (selected) or negative (unselected) that labels a

set of artifacts.

ECCO modules can be of two types as defined next.

Definition 2: A base module labels artifacts that implement

a given feature without any feature interactions, that is, it con-

sists of exactly one positive feature and no negative features.

We refer to them with the feature’s name written in lowercase.

1 class Canvas {
2 #ifdef $LINE
3 List<Line> lines; // line
4 #end
5 #ifdef $RECT
6 List<Rect> rects; // rect
7 #end
8 #ifdef $COLOR
9 Color color = Color.BLACK; // color

10 #end
11 ...
12 #ifdef $LINE
13 void mpLine(MouseEvent e) { // line
14 ...
15 #ifdef $COLOR
16 // derivative δ1(line, color)
17 newLine=new Line(color,start);
18 #end
19 ...
20 }
21 }
22
23 #ifdef $LINE
24 class Line {
25 #ifdef $COLOR
26 // derivative δ1(line, color)
27 Line(Color c, Point start) {...}
28 #else
29 // derivative δ1(line,¬color)
30 Line(Point start) {...}
31 #end
32 ...
33 }
34 #end

Fig. 1: DPL code example with annotations

For example, the field definition List<Line> lines
shown in Line 3 will be included in class Canvas of all
the variants that include feature LINE, independently of any

other features being present. Hence this field definition is an

artifact that is part of the base module line.

Definition 3: A derivative module δn(c0, c1, ..., cn) =
{c0, c1, ..., cn} labels artifacts that implement feature inter-

actions, where ci is F (if feature F is positive) or ¬F (if

negative), and n is the order of the derivative. A derivative

module contains at least one positive feature and any number

of negative features.

If follows from the definition then that a derivative module

of order n represents the interaction of n+ 1 features. Hence

base modules have order 0, because they label a single feature

and hence do no interact with any other features.

Let us now illustrate the concept of derivatives. Recall

that the piece of code formed by Line 26 and Line 27 is

included in a product when both features LINE and COLOR

are selected. Hence, the artifact that represents these two lines

belongs to derivative module δ1(line, color). Similarly, if in

a product the feature LINE is selected but the feature COLOR

is not selected, then Line 29 and Line 30 are included in class

Line. Hence, the artifact that contains these two lines belong

to derivative module δ1(line,¬color). For a more detailed

47

explanation of the rationale behind negative features please

refer to [14].

Definition 4: A dependency establishes a requirement re-

lationship between two sets of modules and it is denoted

with a three-tuple (from, to, weight), where from and to
are a set of modules and weight expresses the strength of the

dependency (i.e. how many artifacts have the dependency).

In ECCO the dependencies denote the syntactic require-

ments of the artifacts at the source code level. An example is

when a statement in an artifact belonging to a module makes

a reference to a variable defined in another module. This is

the case in Line 17 where variable color is used in module

δ1(line, color) but it is defined as part of module color in

Line 9.

The ECCO tool computes all the modules and their de-

pendencies based on the artifacts of the software products

it receives as input and the combinations of features (e.g.

see Table I for DPL). All the information is serialized into

XML files (see [2], [10], [11]) that are used as input in our

visualizations described next.

III. VISUALIZATION OF ECCO MODULES

For the implementation of our visualization prototype we

relied on Data-Driven Documents D3.js [8], [20], a Javascript

library for manipulating documents based on data that uses

HTML, SVG and CSS. D3.js provides methods for drawing

visual representations of data including predefined templates.

D3.js is a popular tool for data visualization because of the

flexibility on what can be built from the provided components.

We exploited this capability to develop our visualizations by

adapting and extending available components.

We developed four visualizations that we applied to four

SPLs whose main characteristics are summarized in Table II.

DPL is our running example. ZipMe is a product line for

a decomposed version of the Java-Pack-Library. Video on
Demand (VOD) is a product line for video-on-demand stream-

ing applications. ArgoUML is an open source project that has

been made into a product line of UML Modeling tools. For

further details on these case studies please refer to [2], [15].

We executed the following visualizations on a standard laptop

computer with an Intel(R) Core i5-337U processor, CPU 1.80

GHz and 4 GB RAM.

TABLE II: Case Studies Overview

Case Study NFeatures NProducts NModules NArtifacts

DPL 6 16 336 630
ZipMe 7 32 940 37343
VOD 11 32 15520 34924

ArgoUML 11 256 52232 204418
NFeatures = number of features, NProducts = number of products,
NModules = number of modules, NArtifacts = number of artifacts

A. Visualization of Dependencies

The first visualization focuses on the dependencies between

modules and was implemented using D3’s Hierarchical Edge

Bundling template [6]. In this visualization the modules are

sorted according to their respective order and the thickness of

the connecting lines depends on the weight of the dependency.

Figure 2 shows this visualization for DPL.

Fig. 2: Visualization of Dependencies of DPL

With this visualization the user can explore the relationships

between the derivatives. For example, in Figure 2 the lines

highlighted in red are the dependencies found from module

fill, to modules rect, dpl, color, and δ1(rect, color).
Notice that for visual simplicity all the modules are depicted

with the δ symbol and without order number. The dependen-

cies visualization it took to compute on average 1.3 ms.

B. Visualization of Derivatives

Derivatives are visualized using the Force-Directed Graph

layout of D3.js as shown in Figure 3 for ZipMe SPL. The

nodes with the prefix ! correspond to the negative features,

for instance the orange circle with the name !gzip at the

bottom of the figure is the negation of the feature GZIP. This

relationship is represented visually with the circles having the

same color. The layout automatically calculates and sets an

initial position for each circle but the user is able to change

their position at any time. The lines connecting the circles

represent the existence of a derivative containing the connected

features. In cases where more than 2 features are present in

the derivative, the lines connecting the features will have the

same color. If the user puts the mouse over the line, the lines

that are part of the selected derivative will be highlighted.

Additionally, the name of the derivative will be shown to the

user. This visualization took between 1.2 ms and 1.5 ms to

compute.

C. Visualization of Modules

The third visualization depicts modules based on the Arc

Diagram layout of D3.js. Figure 4 shows this visualization for

VOD case study. In this visualization features are assigned

a color in a palette. Circles represent features, that when

depicted with a black border denote negative features. The

user is able to select more than one feature and search for the

48

Fig. 3: Visualization of Derivatives ZipMe

modules in which they appear. In Figure 4 we select feature

CHANGESERVER and searched for the modules containing this

feature, yielding a total number of 5184 modules. The thick-

ness of the lines represent the number of times the sequence

containing the connecting features appears on the modules.

The execution time depended heavily on the size of the case

study. The execution times were DPL 894 ms, ZipMe 2.9 sec,

VOD 9.8 sec and ArgoUML 10 min. These results shows an

important scalability issue. For an elaboration on this finding

and for further details please refer to [11].

D. Visualization of Artifact Trees
This visualization shows the structure of the artifacts, in

our case studies these are Java AST nodes. ECCO stores

artifacts as hierarchical trees that also contain cross-references,

for instance when a statement calls a method [10], [15]. Our

visualization relies on the Pack Layout of D3.js for repre-

senting artifact hierarchies. With this layout the size of each

circle reveals a quantitative dimension of each data point [7].

The enclosing circles show the approximate cumulative size

of each subtree. Figure 5 shows visualization for DPL case

study. With this visualization the user can zoom in and zoom

out through the different levels of the hierarchy by clicking

on the artifacts. The circles filled in white represent the leaf

nodes of the tree.
Circles with a dashed border indicate that the corresponding

artifacts have references to other artifacts. If the user hovers

Fig. 4: Visualization of Modules of VOD with selected feature

CHANGESERVER

the mouse over a circle with a dashed border, the circles

representing the referred artifacts are highlighted. We found

out that this approach proved useful for eliminating a large

number of lines representing artifact cross-references.

Fig. 5: Visualization of Artifacts of DPL

IV. RELATED WORK

Software visualization is a subject which is gaining attention

in the software engineering community. As some examples,

Schots et al. performed an extensive study on software visu-

alization for software reuse [26], [27], Novais et al. carried

out a systematic mapping study in software evolution visu-

alization [22], Prado et al. performed a systematic mapping

study of visualization tools and techniques for software com-

prehension [25], and Paredes et al. carried out a systematic

mapping study of the use of information visualization for

software development following Agile approaches [23].

Visualization has also been applied to SPLs as attested by

our recent work where we identified over 30 articles on this

subject [17]. Next we briefly sketch some of our findings.

In SPLs, feature models are tree-like structures that have

become the de facto standard to visually represent the valid

combinations of features [13], [4], which alternatively are

captured as tables such as Table I for DPL. There have been

several proposals to visualize feature models. For instance,

Nestor et al. propose a tool for the interactive configuration of

products based on feature models [21]. As another example,

Urli et al. present a program comprehension approach called

Variability Blueprint which is a polymetric-based visualization

for representing the hierarchical structure of a feature model

and its internal and external constraints [29]. Along the

same lines Martinez et al. propose Feature Relations Graphs

(FRoGs) as an interactive visualisation for domain experts and

stakeholders to understand and maintain the constraints among

features, and guide them through the creation of products [18].

Vasconcelos et al. also use feature models but in contrast for

the selection of software visualizations [31].

There are also examples beyond visualization of feature

models. For instance our previous work described also the

49

application of D3.js for the visualization in combinatorial

interaction testing for SPL [16]. Murashkin et. al propose

a visualization for multi-objective optimization of product

configurations [19]

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented our ongoing work on visual-

ization of features and their interactions at the source code

level following the ECCO approach. We proposed four basic

visualizations, that rely and extend components based on D3.js

visualization tool, which we applied to four case studies of

different domains and magnitudes. The implementation of

our prototype and its applications let us gauge the potential

benefits of our visualization for SPL developers but also

uncovered limitations that we plan to address as part of our

future work.

We found that as the amount of data to visualize increases,

for instance as the number of features grows, can have impor-

tant performance penalties in the visualizations. For example,

zooming in and zooming out of the artifacts visualization

is not instantaneous and it my require a couple of seconds

for the large cases such as ArgoUML. In other to improve

performance we are exploring options such as pre-processing

the visualization data or capping the nesting levels of the

artifacts. We also plan to extend our set of case studies to

include SPLs implemented in languages other than Java, link

our visualization with the source code editors, and integrate

our prototype as a plugin in the ECCO tool.

VI. ACKNOWLEDGEMENTS

This research was partially funded by the Austrian Science

Fund (FWF) projects P25289-N15 and P25513-N15.

REFERENCES

[1] S. Apel, J. M. Atlee, L. Baresi, and P. Zave. Feature interactions: The
next generation. Technical Report 14281, Dagstuhl Seminar, July 2014.

[2] W. K. G. Assunção, R. E. Lopez-Herrejon, L. Linsbauer, S. R. Vergilio,
and A. Egyed. Extracting variability-safe feature models from source
code dependencies in system variants. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2015, Madrid, Spain,
July 11-15, 2015, pages 1303–1310, 2015.

[3] D. S. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise
refinement. IEEE Trans. Software Eng., 30(6):355–371, 2004.

[4] D. Benavides, S. Segura, and A. R. Cortés. Automated analysis of
feature models 20 years later: A literature review. Inf. Syst., 35(6):615–
636, 2010.

[5] T. Berger, D. Lettner, J. Rubin, P. Grnbacher, A. Silva, M. Becker,
M. Chechik, and K. Czarnecki. What is a feature? a qualitative study
of features in industrial software product lines. In SPLC, pages 16–25,
2015.

[6] M. Bostock. Hierarchical Edge Bundling, 2011. (accessed February 15,
2016).

[7] M. Bostock. Pack Layout, 2015. (accessed February 13, 2016).
[8] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven documents.

IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2011.
[9] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed. En-

hancing clone-and-own with systematic reuse for developing software
variants. In 30th IEEE International Conference on Software Mainte-
nance and Evolution, Victoria, BC, Canada, September 29 - October 3,
2014, pages 391–400, 2014.

[10] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed. The
ECCO tool: Extraction and composition for clone-and-own. In 37th
IEEE/ACM International Conference on Software Engineering, ICSE
2015, Florence, Italy, May 16-24, 2015, Volume 2, pages 665–668, 2015.

[11] S. Illescas. Visualization of variability realization. Technical report,
Johannes Kepler University Linz, 2016.

[12] T. Käkölä and J. C. Dueñas, editors. Software Product Lines - Research
Issues in Engineering and Management. Springer, 2006.

[13] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon
University, 1990.

[14] L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed. Recovering trace-
ability between features and code in product variants. In T. Kishi,
S. Jarzabek, and S. Gnesi, editors, SPLC, pages 131–140. ACM, 2013.

[15] L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed. Variability extraction
and modeling for product variants. Software & Systems Modeling, pages
1–21, 2016.

[16] R. E. Lopez-Herrejon and A. Egyed. Towards interactive visualization
support for pairwise testing software product lines. In 2013 First IEEE
Working Conference onSoftware Visualization (VISSOFT), pages 1–4.
IEEE Computer Society, 2013.

[17] R. E. Lopez-Herrejon, S. Illescas, and A. Egyed. Visualization for
software product lines: A systematic mapping study. In VISSOFT, 2016.

[18] J. Martinez, T. Ziadi, R. Mazo, T. F. Bissyandé, J. Klein, and Y. L.
Traon. Feature relations graphs: A visualisation paradigm for feature
constraints in software product lines. In Second IEEE Working Confer-
ence on Software Visualization, VISSOFT 2014, Victoria, BC, Canada,
September 29-30, 2014, pages 50–59, 2014.

[19] A. Murashkin, M. Antkiewicz, D. Rayside, and K. Czarnecki. Visualiza-
tion and exploration of optimal variants in product line engineering. In
Proceedings of the 17th International Software Product Line Conference,
SPLC ’13, pages 111–115, New York, NY, USA, 2013. ACM.

[20] S. Murray. Interactive data visualization for the Web. ” O’Reilly Media,
Inc.”, 2013.

[21] D. Nestor, S. Thiel, G. Botterweck, C. Cawley, and P. Healy. Applying
visualisation techniques in software product lines. In Proceedings of the
ACM 2008 Symposium on Software Visualization, Ammersee, Germany,
September 16-17, 2008, pages 175–184, 2008.

[22] R. L. Novais, A. Torres, T. S. Mendes, M. G. Mendonça, and N. Zaz-
worka. Software evolution visualization: A systematic mapping study.
Information & Software Technology, 55(11):1860–1883, 2013.

[23] J. Paredes, C. Anslow, and F. Maurer. Information visualization for agile
software development. In Second IEEE Working Conference on Software
Visualization, VISSOFT 2014, Victoria, BC, Canada, September 29-30,
2014, pages 157–166, 2014.

[24] K. Pohl, G. Bockle, and F. J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[25] M. P. Prado, A. M. R. Vincenzi, F. A. A. de M. N. Soares, F. Cesar,
G. P. de Paula, H. A. D. do Nascimento, J. C. Silva, J. L. de Oliveira,
L. C. Lima, and T. Fernandes. Characterization of techniques and tools
of visualization applied to software comprehension: A systematic map-
ping. In International Conference on Software Engineering Advances
(ICSEA), 2013.

[26] M. Schots. On the use of visualization for supporting software reuse. In
P. Jalote, L. C. Briand, and A. van der Hoek, editors, 36th International
Conference on Software Engineering, ICSE ’14, Companion Proceed-
ings, Hyderabad, India, May 31 - June 07, 2014, pages 694–697. ACM,
2014.

[27] M. Schots, R. Vasconcelos, and C. Werner. A quasi-systematic review on
software visualization approaches for software reuse. Technical report,
Federal University of Rio de Janeiro, 2014.

[28] M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy of variability
realization techniques. Softw., Pract. Exper., 35(8):705–754, 2005.

[29] S. Urli, A. Bergel, M. Blay-Fornarino, P. Collet, and S. Mosser. A
visual support for decomposing complex feature models. In 3rd IEEE
Working Conference on Software Visualization, VISSOFT 2015, Bremen,
Germany, September 27-28, 2015, pages 76–85, 2015.

[30] F. J. van d. Linden, K. Schmid, and E. Rommes. Software Product Lines
in Action: The Best Industrial Practice in Product Line Engineering.
Springer, 2007.

[31] R. Vasconcelos, M. Schots, and C. Werner. An information visualization
feature model for supporting the selection of software visualizations. In
22nd International Conference on Program Comprehension, ICPC 2014,
Hyderabad, India, June 2-3, 2014, pages 122–125, 2014.

[32] P. Zave. Faq sheet on feature interaction.
http://www.research.att.com/ pamela/faq.html.

50

